DILUTE SOLUTIONS

Solution: Homogenous mixture of two or more substances whose composition may be altered within certain limits.

Pre-requisite knowledge

Basic concentration terms like Molarity, Molality, Mass percentage etc from Some basic concepts of chemistry

Solubility

Amount of solute dissolved $\times 100$ Solubility = Amount of solvent

Types of Liquids

- Volatile Which converts into vapours fast.
- Non Volatile which doesn't convert into vapours.

Vapour Pressure

- In closed containers only.
- Pressure exerted by the vapours

VP ∝ Temperature

VP

✓ 1/Intermolecular forces

Raoult's Law for two volatile liquids

po A & po B : Partial vapour pressure of pure A & B

x_A & x_B: Mole fractions in liquid phase

pA & pB: Vapour Pressure of A & B in solution

This case is valid when A is more volatile than B x, here is mole fractions in liquid phase

Dalton's Law

if y is mole fractions

in gas phase

$$p_A = p_A^o, y_A \& p_B = p_B^o, y_B$$

Raoult's Law for non volatile solute

If A is solvent and B is solute, then B doesn't vapourise Thus, p = 0

$$P_T = p_A + 0 = p_{A}^o x_A$$

= $p_{solvent}^o x_{solvent}$

Ideal Solutions	Ideal and Non-Ideal Solutions		
Obeys Raoult's	Doesn't obey Raoult's Law		
o beyo madare o	Positive Deviation	Negative Deviation	
IMF b/w A-A and B-B = A-B	IMF b/w A-A & B-B > A-B	IMF b/w A-A & B-B < A-B	
$p_A = p^o_A.x_A$ $p_B = p^o_B.x_B$	$p_{A} > p_{A}^{o}.x_{A}$ $p_{B} > p_{B}^{o}.x_{B}$	$p_A < p_A^o. x_A$ $p_B < p_B^o. x_B$	
$\Delta H_{mix} = 0$ $\Delta V_{mix} = 0$ $\Delta S_{mix} > 0$ $\Delta G_{mix} < 0$	$\Delta H_{mix} > 0$ $\Delta V_{mix} > 0$ $\Delta S_{mix} > 0$ $\Delta G_{mix} < 0$	$\begin{array}{l} \Delta H_{mix} < 0 \\ \Delta V_{mix} < 0 \\ \Delta S_{mix} > 0 \\ \Delta G_{mix} < 0 \end{array}$	
 Bromoethane + chloroethane Benzene + Toluene 	 CCl₄ + C₆H₆ CCl₄ + CH₃OH CCl₄ + C₂H₅OH Ethanol + water 	 HNO₃ + H₂O Acetone + Chloroform Chloroform + Acetic acid 	

Negative Deviation

Azeotropic mixture

A liquid mixture with a constant boiling point and vapour composition the same as liquid composition. The components cannot be se Parated by distillation.

Minimum Boiling Azeotrope	Maximum Boiling Azeotrope	
B.P. of Azeotrope less than individual Comp.	B.P. of Azeotrope more than individual Comp.	
Solutions swith Positive deviation from R.L.	Solutions with Negative deviation from R.L.	

Vant Hoff Factor (i)

- Non Electrolytes do not undergo dissociation.
- Electrolytes (Strong or weak) undergo dissociation or association when dissolved in solvent.
- Thus, Actual solute particles differ from theoretical.

For Dissociation	i > 1	For	Association	i < 1
$i = \frac{\text{Actual no. of moles of solute present}}{\text{Theoritical no. moles of solute mixed}}$				
Formula to calculate vant hoff factor when D.O.D (α) is involved			$i = 1 + (n - 1)\alpha$	

Value of n in different mechanisms

Case of Dissociation

n = 2	NaCl → Na ⁺ + Cl ⁻	Two ions Dissociate	
n = 3	$BaCl_2 \rightarrow Ba^{+2} + 2Cl^-$	Three ions Dissociate	

Case of Association

n = 1/2	$2CH_3COOH \rightleftharpoons (CH_3COO)$	$OH)_2$
---------	--	---------

- For Dimerisation, i = 1/2; For Trimerisation i = 1/3
- In case of Non-Electrolytes like Glucose, Urea, sucrose,
 n = 1 resulting in i = 1.
- i is included in all the colligative formulas.
- Degree of dissociation is 1 for strong electrolytes

Relative Lowering in Vapour Pressure

On adding non volatile solute to a volatile solvent, the vapour pressure of the solvent decreases

$$\frac{P_A^{\ o} - P_S}{P_A^{\ o}} = i x_B \simeq i \frac{n_B}{n_A}$$

Elevation in Boiling Point

When non volatile solute is dissolved in volatile solvent its V.P decreases. Thus, Boiling point increases

ropic mixture

$$\Delta T_{b} = T_{b} - T_{b}^{o}$$

$$\Delta T_{b} = iK_{b}m$$

 $\mathbf{T_b} = \text{Boiling pt. of Solution}$

 $T_b^o = Boiling pt. of pure solvent$ $\mathbf{m} = \text{molality of solution}$

 $K_b =$ Ebullioscopic Constant

Ebullioscopic constant

$$K_b = \frac{RT_b^{o^2}}{1000 L_v}$$

$$K_b(water) = 0.52 K kg/mol$$

$$T_b^o$$
 = Standard B. P.
 L_v = Latent Heat of vap.
= $\frac{\Delta H}{M. W.}$

Depression in Freezing Point

When non volatile solute is dissolve in volatile solvent its V.P decreases. Thus, freezing point decreases.

$$\Delta T_f = T_f^o - T_f$$
$$\Delta T_f = iK_f m$$

 T_f = Freezing pt. of Solution

To f = Freezing pt. of pure solvent

m = molality of solution

K_f = Cryoscopic Constant

Cryoscopic constant

$$K_f(water) = 1.86 \text{ K kg/mol}$$

$$K_f(\text{water}) = 1.8$$

$$K_f = \frac{RT_f^{o^2}}{1000 L_f}$$

$$T_f^0$$
 = Standard F. P.

$$L_v$$
 = Latent Heat of fus.

Osmotic Pressure

The minimum pressure which must be applied on solution side to prevent osmosis

Osmosis only takes place in solutions with different conc.

$$\pi = i CRT$$

C = concentration

 $\mathbf{R} = \mathbf{gas} \ \mathbf{constant}$

T = Absolute

Temperature

Types of Solutions

HYPERTONIC HYPOTONIC ISOTONIC

Solvent diffuses out

Solvent diffuses in

Same osmotic

Henry's Law

The solubility of a gas in a liquid is proportional to pressure of the gas

 $p = K_H.x$

E.g. Bends prevention in scuba drivers

"Whereas the chemico-chemists always find in industry a beautiful field of gold-laden soil, the physico-chemists stand somewhat farther off, especially those who seek only the greatest dilution, for in general there is little to make with watery solutions."

Jacobus Henricus van 't Hoff

